解説

岩盤推進における カッタヘッドの検討と 掘削添加材注入量の検討

脇田 清司

ジオリード協会会長 (株)ウイングス代表取締役

1 はじめに

岩盤、玉石地盤掘削に対し、密閉型推進工法での 必須条件は掘進機が高い回転トルクを有することです が、ビット形状やカッタ回転数、面板開口率、この3点 が嚙み合わないと掘削効率が上がりません。また、岩種、 玉石の大きさ、一軸圧縮強度によって、ビット形状と面 板の顔を決定することは可能ですが、対象土質が変化 すると、掘削効率 (適正な日進量等) が大きく低下します。 この時に最も重要な対処は掘削添加材の注入量です。 掘削添加材の注入量を維持させると、排泥量が増大し、 現場コストが跳ね上がるので、設計変更の協議をする 必要があり、承諾していただかないと掘削添加材の量を 維持できないという問題が発生します。掘削添加材の量 を維持しても、大きくは、元押速度は上がりません。しかし、 これを無視し、掘削添加量を減ずると、掘進機のビット 摩耗以外に、ベアリングやシール等の損耗がすすみます。 ローラビット、カッタビットの摩耗率は計算できますが、掘 進機駆動部のベアリング、シール等の損耗は、おおよそ の寿命はあるものの、外見だけでは交換時期の判断は 難しく、グリス注入頻度以外でも、掘削添加材の注入 量次第では、予想以上に損耗がすすむ場合があります。 特に呼び径が大きい、外周駆動の掘進機は、シールの 当り面等にチャンバ内の発熱も悪影響を及ぼすこともあり、 「掘削添加材の注入量」の観点も含め、岩盤推進に おけるトラブル事例を検証してみたいと思います。

2 トラブル事例

以下に岩盤推進の工事概要(図-1)とその現場におけるトラブル事例を紹介します。本現場は、既に他工法で発進立坑から167m掘削後、何らかの理由により、推進不能となり、中間立坑を築造後、掘進機を回収し、泥濃式エスエスモール工法で、残りの距離を掘進することになりました

工事概要:呼び径1100泥濃式推進(L1は他工法)

L₁=163.644m (中間立坑築造し回収)

L₂=251.122m(エスエスモールで再発進)

 $(\Sigma L = 414.7 \text{m})$

土 質:硬質土(1)~(2)

頁岩、礫岩、砂岩

一軸圧縮強度: 4.8MN/m² (発進側)

2.8MN/m² (到達側)

2.1 掘進機選定理由

設計図書には、本工事の土質が、頁岩層主体で一軸圧縮強度 4.8MN/m²以下というデータがありました(表-1)。砂岩、礫岩が混在してはいるものの、高いトルクで積極的に大きな開口で取り込んでやれば、過去の経験値から元押速度は、4~5mm/min は出せるものと判断しましたが、補助対策として、粘性土分の付着を

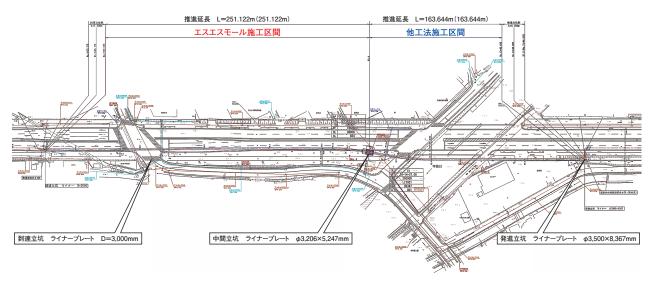


図-1 推進施工平面

表-1 一軸圧縮試験結果

	岩石の一軸圧縮試験								
調 査 名									
討	試験期日 2022 年 10 月 24日				整理担当者 _		藤下 亮一		
	試 *	}	番号		No. 7+40	BC. 9	発進立坑	到達立坑	
	深		度		管心 GL-9.6m	管心 GL-10.8m	管心 GL-10.5m	管心 GL-9.4m	
高		さ	h	(cm)	10. 08	10. 16	10. 07	9. 21	
直		径	D	(cm)	4.71	4. 40	4. 73	4. 47	
断	面	積 A	$=\frac{\pi}{4}D^2$	(cm²)	17. 4	15. 2	17. 6	15. 7	
体		積 V	= A, h	(cm³)	175. 4	154. 4	177. 2	144. 6	
細	長	比γ	= h / [)	2. 14	2. 31	2. 13	2. 06	
破 最	壊 時大 荷	の 重	P	(KN)	3. 6	2. 5	8. 4	4. 4	
_	軸圧縮強	度σ	$C = \frac{P}{A}$	· (MN/m²)	2. 1	1.6	4.8	2. 8	
— 補	軸圧縮強		σС	(MN/m²)					
ぜ	い性	度 B	$r = \frac{\sigma}{\sigma}$	c t					
自重	然 状 態	の 量	W	(g)	382. 2	413. 1	405. 3	314. 6	
単	位体積重	量 γ	=W/V	(g/cm ³)	2. 179	2. 676	2. 287	2. 176	
	破 歩	Ę j	形状				$\overline{\lambda}$	X	

抑え、取込効果を上げるため、以下のような装備を追加 しました。

- ①チャンバ内に攪拌翼を2本装備
- ②加泥材の注入口をチャンバ内に1個(2B)増設
- ③排泥管前部(ピンチバルブより切羽側)に注入口 (1B) を装備

今回の提案する掘進機の性能諸元は呼び径1100の 専用機がないため呼び径1000の巨礫破砕型掘進機の シールド外殻部を拡大して呼び径1100用とした(図-2、 写真-1)。

カッタ形式:スポーク型(中間ビーム支持)

カッタモータ: 15kw×440V×2 台

カッタトルク: 常用 54.0kN-m 回転数 5.0rpm

トルク係数:23.0

このような掘進機の仕様であれば、解膠剤(付着防 止を目的とした材料)を含んだ掘削添加材を注入しなが ら、面板前とチャンバ内の閉塞を減らしていけば想定の 日進量で推進できるものと考えています。対象土質の強 度が10MN/m²以上であれば、ローラビットを装備した 面板の方が掘削効効率が高いとは思いますが、本現場 のような5MN/m²前後の頁岩、泥岩層では、開口率の 大きい切削方式のビットの方が、安定した掘進ができる ものと判断しました。

2.2 推進開始

当初の計画通り、日進量1.2~1.5m前後で掘進でき