解説

老朽化した既設管を新管に置き換える 改築推進工法「リバースエース」

森治郎

アイレック技建(株) 非開削推進事業本部副本部長

1 はじめに

我が国のインフラは高度成長期に重点的に整備されてきました。そのため、インフラの老朽化が急速に進行することが予測されています。2020年度末における下

水道管きょの総延長は約 49万 km あり、このうち耐 用年数50年を経過した管 きょ約2.5万km (総延長 の5%) が、10年後は8.2 万 km (同 17%)、20 年 後は19万km (同39%) と今後は急速に増加しま す。当社では、下水道管 きょの整備に活用いただい ている小口径管推進工法 「エースモール」をベース に改築推進工法「リバー スエース」を開発し、来た るべき老朽化管きょの大改 築時代に備えています。

本稿では、改築推進工 法(リバースエース)の技 術概要とともに施工事例に ついて紹介します。

2 改築推進工法について

老朽劣化した下水道管きょの再構築方法としては、 既設管の内面に改良を施し新管と同等以上の品質とする「更生工法」と既設管を新管に入れ替える「敷設

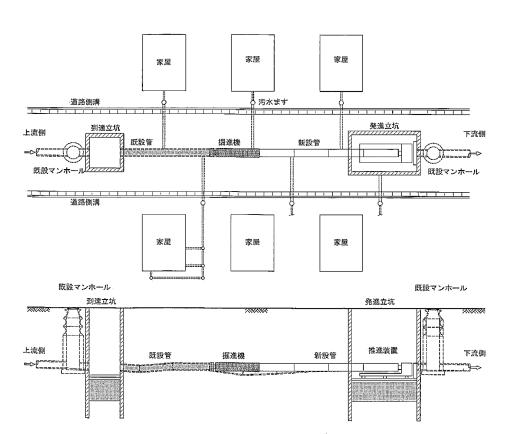


図-1 改築推進工法の概要図2)

替工法」に分類されます。さらに「敷設替工法」は、 道路を掘削して既設管を新管と入れ替える「開削工法」 と既設管を掘進機により切削破砕しながら新管を敷設す る「改築推進工法」に分類されます。

「更生工法」と「敷設替工法」とのすみ分けは、既設管の劣化状態や埋設状況等に因ります。たるみ、段差、継手のズレ、破損等の劣化が激しい場合は「敷設替工法」が採用されます。改築推進とすべき既設管の状態を表-1に示します。さらに、既設管の埋設深度が大きい、交通量が多い、他企業埋設物が輻輳している等「開削工法」による敷設替えが困難な場合に「改築推進工法」が採用されることとなります(図-1)。

表—1	改築推進とすべき既設管の乳	型堂	(
12		₹ क	(参与)

異常の項目		ランク	A	В	
上下方向でのたるみまたは蛇行	管きょ内径	700mm 未満	内径以上	内径の1/2以上	
		700mm以上 1650mm未満	内径の1/2以上	内径の1/4以上	
		1650mm以上 3000mm未満	内径の1/4以上	内径の1/8以上	
管の破損			欠落	_	
徻	きの継手	ズレ	脱却	_	
塩化	ビニル管	その偏平 アルティ	たわみ率 15% 以上	_	

3.2 工法の特長と施工実績

リバースエースはベースマシンであるエースモールの 優れた切削能力を引き継ぎ、さらに鉄筋コンクリートを切 削できるカッタヘッドを装備することで、次の特長を持って います。

写真-1 リバースエース

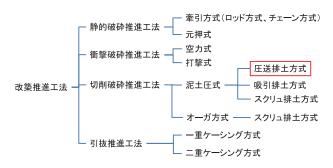


図-2 改築推進工法の分類

3 リバースエース工法

3.1 工法概要

リバースエース工法は改築推進工法の「切削破砕推進工法(既設管充填方式)圧送排土方式」に分類されます(写真-1、図-2)。既設管の内部をモルタルで充填することで、掘進機が既設管を周辺地盤や基礎材とともに破砕し、泥土と掘削攪拌されたそれらの破片を掘進機の後方から取り込み、圧送ポンプにより排土を行う工法です。

リバースエース工法の適用範 囲を**表-2**に示します。

表-2 適用範囲

			適用領域		
既設管	本管	管種	鉄筋コンクリート管 〔開削用、推進用(SUS・鋼製カラー)〕 レジンコンクリート管 〔開削用、推進用(SUS・鋼製カラー)〕 塩化ビニル管 開削用陶管 ポリエチレン管		
		呼び径	700以下		
		基礎	砂・砕石・枕木・コンクリート		
		状態	目地・段差・ズレ等の影響など		
新設管 呼び径		管種	推進用鉄筋コンクリート管 推進用レジンコンクリート管 エースモール用推進鋼管 推進用ダクタイル鋳鉄管		
		呼び径	250 ~ 700 (推進用鉄筋コンクリート管の場合) 既設管径によらず任意に口径拡大が可能		
施工長			開削用管:最大 150 m程度 推進用管:最大 100 m程度 (鋼製カラーで接続された推進用管の場合は最大 65 m程度まで)		
土被り			2mから6m程度 (プリズム使用時または、水替工不要の場合は大土被り適用が可能)		
推進曲率半径		Ě	最小100m程度		
周辺地盤の条件		件	エースモール工法の適用土質領域において施工可能 地下水位以下でも施工可能		